3
RUDN University Scientist Compares Algorithms for Solving the Optimal Control Problem

RUDN University Scientist Compares Algorithms for Solving the Optimal Control Problem

Systems of several objects with an assigned sequence of actions are described with so-called optimal control problem. They arise for example, in controlling a spaceship or managing a country’s tax system. Mathematically, this means that one needs to minimize or maximize some parameter of the system (for example, minimize time or maximize employment). There is no generally accepted universal way to analyse such systems numerically, but there are many approaches and algorithms. Researchers from RUDN University and Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences have proposed two approaches based on several modern computer algorithms for solving the problem of optimal control of a group of robots.

“A group of robots should move from given initial states to terminal ones while avoiding obstacles in a minimum time. The problem belongs to the class of infinite-dimensional optimization. There are two approaches to solve it numerically. A direct approach is based on a discretization of the control function and reduction to the finite-dimensional optimization. An indirect approach is based on the Pontryagin maximum principle for the transition to the boundary value problem and its numerical solution”, said Sergey Konstantinov, Senior Lecturer of the на Department of Mechanics and Control Processes of RUDN University.

Scientists have proposed two approaches to solving the optimal control problem based on direct methods. In a test, robots should move from the starting point to the end point and not collide with obstacles and other robots. In the first approach, a group of robots was considered as a single object. In this case, the optimal control problem is reduced to a non-linear programming problem. This means that it cannot be reduced to a system of linear equations, which complicates the problem. In the second approach, they first find attractors for each robot — special points on the plane, that “tell” the robot how to avoid obstacles on the way. The results obtained were then used to solve the entire original problem. Calculations based on two approaches were implemented using evolutionary algorithms and the random search method. The researchers conducted 10 tests for each of the four evolutionary algorithms and the random search method and compared their performance.

The effectiveness of two approaches and 5 algorithms (the random search method and 4 evolutionary algorithms: the genetic algorithm, particle swarm optimization, bee algorithm, and gray wolf optimizer) was evaluated based on the value of the objective function — the function that needs to be minimized in the optimal control problem. The smaller it is, the better the algorithm performed. For the first approach, all evolutionary algorithms turned out to be more efficient than the random search method. The particle swarm optimization performed best, with an average value of 5.5 for the objective function. For the random search method, this value was almost three times higher — 15.83. For the second approach, the random search method also proved to be the least effective. The evolutionary algorithms worked about equally efficiently. In one of the tests, gray wolf optimizer gave the minimum value of the objective function — 2.49.

“Currently, there are no universal numerical methods for solving optimal control problems. We plan to continue the study of evolutionary algorithms and consider other new evolutionary algorithms, including hybrid ones”, said Sergey Konstantinov, Senior Lecturer of the Department of Mechanics and Mechatronics of RUDN University.

The results are published in the journal Applied Sciences. https://www.mdpi.com/2076-3417/11/15/7096

Visiting Professors View all
03 Nov 2017
Michele Pagano is a graduate of the University of Pisa, a leading scientist, the author of more than 200 publications in international journals, and a participant in many international research projects
3117
Student's Scientific Initiatives View all
03 Nov 2017
June 22 - 26, 2017 in Barnaul, Altai State University, took place the Summer Academy of the BRICS Youth Assembly, an international event that brought together representatives of different countries
1771
Similar newsletter View all
16 Oct
Green Diplomacy Center opened in RUDN

A Center for Green Diplomacy was created based on the RUDN Institute of Environmental Engineering. Among the goals is the integration of the results of scientific and practical activities into the development of international relations in the environmental sphere. The center's specialists will also accompany the corporate sector in solving various environmental problems.

92
19 Apr
A huge pizza and a jug of water, why should 5G networks be sliced? The winners of RUDN science competition explain

RUDN summarized the results of the scientific competition "Project Start: work of the science club ". Students of the Faculty of Physics, Mathematics and Natural Sciences have created a project for a managed queuing system using a neural network to redistribute resources between 5G segments. How to increase flexibility, make the network fast and inexpensive and reach more users — tell Gebrial Ibram Esam Zekri ("Fundamental Computer Science and Information Technology", Master's degree, II course) and Ksenia Leontieva ("Applied Mathematics and Computer Science", Master's degree, I course).

166
19 Apr
Lyricists and physicists are now on equal terms: the first humanitarian laboratory opened in RUDN

What is your first association with the word “laboratory”? Flasks and beakers? Microscopes and centrifuges? Yes, many of us would answer the same way.

210
Similar newsletter View all