4
RUDN University mathematician calculates the optimal trajectories to Mars and Mercury for a spacecraft with electric propulsion
RUDN University mathematician calculates the optimal trajectories to Mars and Mercury for a spacecraft with electric propulsion
RUDN University mathematician proposed a method for calculating the optimal trajectory of spacecraft with electric propulsion, whose thrust is thousands times less than chemical one has, but it is able to work for years. These motors are best suited for interplanetary missions. Mathematicians calculated the flight parameters of the space probe with such motor to Mars and Mercury. The paper is published in the journal Cosmic Research.

Chemical rocket engines create a large thrust, which allows bringing tons of cargo in orbit for a few minutes. At the same time, a huge amount of fuel is consumed. Once the spacecraft is in outer space, a large thrust becomes unnecessary, especially for automatic interplanetary stations that can fly to their destination for years.

An electric propulsion system (EPS) is better suited for such missions. The propellantworking medium in an electric propulsion system is ionized gas, which is accelerated in a magnetic field. Due to the low consumption of the working mediumpropellant, the EPS is able to work for a very long time.

"Because of the low thrust levels of EPS, it can be used most effectively only at sufficiently large distances from the attracting objects (planets or massive satellitesmoons), i.e., in interplanetary flights", — the study's author, RUDN University mathematician Alexey Ivanyukhin explains.

According to him, in the case of the use of EPS in the vicinity of a massive body, the available jet acceleration can be extremely low in relation to the gravitational acceleration — at the level of 10−5-10−4. But on interplanetary trajectories, the level of jet acceleration of the EPS is not much inferior to the Sun’s gravity, and their ratio can be 10−2-10−1.

Alexey Ivanyukhin reminded that for the exploration of the Solar System at the turn of the century EPS have been used as sustainerprimary propulsion system. The first such spacecrafts were Deep Space 1 (passage of an asteroid and two comets fly-by), Smart-1 (enter lunar orbit insertion), Hayabusa (delivery of soil samples from the asteroid Itokawa), Dawn (consecutive flight to the asteroids Vesta and Ceres).

30 Jan 2018
The conference on international arbitration, where law students from European universities simulate court proceedings and alternately defend the interests of the respondent and the orator.
297
International Projects View all
Similar newsletter View all
02 Apr
The Financial Support of RUDN Scientific Journals: Results Are Announced

The results of the contest launched to support the development of scientific journals of RUDN University are summed up. The purpose of the contest is to contribute to the improvement of the academic reputation of RUDN University both as a research center and a publisher of authoritative scientific journals.

49
02 Apr
RUDN Tree Talkers Will Monitor the State of Trees in Moscow

In 2020, the Moscow City Government will begin to monitor urban trees using devices created by RUDN scientists. This was announced by the head of Moscow Department of Nature Management and Environmental Protection Anton Kulbachevsky during the 20th anniversary meeting of the Panel of the Department. The event was held on March 2, 2020. Elvira Dovletyarova, head of the Department of Landscape Design and Sustainable Ecosystems of the Agrarian and Technological Institute of RUDN University took the floor as a visiting expert.

49
02 Apr
RUDN University Chemist Invented a "Line Production" Method of Synthesis of 28 Biologically Active Molecules

A chemist at RUDN University has invented a new method for the synthesis of a large group of complex poly-heterocyclic organic compounds, which draw interest as possible future medications. The researcher turned to a two-step reaction, in which he used affordable and cheap organic reagents and catalysts based on gold, which allowed him to synthesize as many as 28 new molecules. This approach will significantly expand the libraries of biologically active substances. The work was published in Organic & Biomolecular Chemistry.

47
Similar newsletter View all