RUDN University mathematician first described the movement in a flat strip of plasma
RUDN University mathematician first described the movement in a flat strip of plasma
RUDN University mathematician for the first time proved the theorem of existence and uniqueness of solutions of the Zakharov-Kuznetsov equation in a strip. Such theorems are very rare for partial differential equations. The new results can be applied, for instance, in astrophysics, in describing the propagation of plane waves in plasma. The article is published in the journal Nonlinear Analysis: Real World Applications.

The Zakharov-Kuznetsov equation is a one-function equation of two variables x and y. For physics, x is the direction of wave propagation, and the deformation of the medium occurs along the perpendicular direction y. For example, an oscillation of the guitar string looks like the wave runs down the string, while the oscillations occur perpendicular direction relative to the run of the wave.

There are a large number of results that describe solutions of the Zakharov-Kuznetsov equations in the case when there are no constraints on y. But the question of wave propagation in the strip — when y is limited — was almost not studied until recently. And this is although such a statement of the problem has a physical meaning, and therefore potential applications.

RUDN University mathematicians dealt with the Zakharov-Kuznetsov equation in the strip. They examined three main cases — when there are no oscillations on the boundary of the strip, when there is no current on the same boundary and when the boundary conditions are periodic in structure. The latter case corresponds to the propagation of waves in a medium whose structure is periodic in x.

In all these cases mathematicians managed to prove theorems of existence and uniqueness of solutions. For systems of partial differential equations, which include the Zakharov-Kuznetsov equation, such equations are very rare.

These results are the first for solutions of the equation with initial conditions in the strip. Flat plasma flows with boundary conditions, which were considered by RUDN University scientists, can occur in physics and astrophysics.

The Zakharov-Kuznetsov equations belong to a wider category of equations known as the Korteweg-de Vries equations. In the study of this category of equations for the first time, it was possible to describe solitons — waves whose shape does not change during movement. Physicists consider solitons as a tool for modern optical data transmission systems. The study of solitons, which can arise in the Zakharov-Kuznetsov equations, is one of the options for the development of the work done by RUDN University mathematicians.

The article in the journal Nonlinear Analysis: Real World Applications

International scientific cooperation View all
03 Nov 2017
The main goal of the RUDN University and UNISDR Office for Northeast Asia and Global Education and Training Institute for Disaster Risk Reduction at Incheon (UNISDR ONEA-GETI) cooperation is to obtain knowledge about disaster risk reduction and international experience in this area for creating training courses for basic and additional professional education in RUDN
International Projects View all
Similar newsletter View all
20 Jul
RUDN chemist synthesized gold-based electrocatalysts

A RUDN chemist has synthesized an electrocatalyst based on gold nanoparticles with organic ligands, which can trigger both hydrogen production reactions and oxygen reduction reactions in fuel cells. The yield of products with the new catalyst was twice as high as when using a traditional platinum-based catalyst.

20 Jul
RUDN University chemist discovered a way to quadruple the speed of toluene photooxidation

A chemist from RUDN University has proposed a new way to control toluene photooxidation using composite catalysts — artificial diamond and titanium dioxide. The discovery refutes the previously existing physical hypothesis about the process of photooxidation of toluene.

20 Jul
RUDN University biologist developed new model for analyzing photosynthesis in vivo

A RUDN University biologist has developed a model for the analysis of photosynthesis in vivo. This method allows you to calculate the absorption coefficient of light by chlorophyll, based on its reflectivity. Analysis of light absorption is important for assessing ecosystem productivity, which affects the state of the biosphere and the global climate.

Similar newsletter View all