4
Simplicity and Efficiency: RUDN University Chemists Discover New Unique Approach to Creating Smart Packaging
Simplicity and Efficiency: RUDN University Chemists Discover New Unique Approach to Creating Smart Packaging
RUDN University chemists have discovered a unique method for making plastic film based on natural polysaccharides. It simultaneously has antioxidant, antimicrobial and barrier properties, and protects the content against ultraviolet exposure. Using the film to package and coat food products will considerably extend their shelf life.

The history of production of polymer coatings with protection properties is not new. However, the methods are being improved, thereby enhancing fundamental science. RUDN University chemists developed nanoparticles where the following four properties are combined not separately but altogether: the first one is traditional – barrier property, and the rest are so called active properties: antioxidant, antimicrobial properties and the ones which protect the product against ultraviolet exposure.

The basis for polymer coatings is bilayer. The unique combination and proportions of polymer components make it possible to obtain films with the following properties:

  • low permeability to water vapour and oxygen,
  • enhanced mechanic properties: high-tensile strength,
  • active properties, i.e. apparent antibacterial and fungicidal effects.

Traditional packaging has only barrier properties. It includes the packaging we are used to seeing every day: plastic, vacuum one. Imagine that you buy a carton of milk or a pack of sausages – they will be in so called traditional packaging.

If the packaging has antibacterial properties, protects against ultraviolet exposure, or has any other properties – it is called active. A whole range of chemical “introductions” are carried out to make each of its variations. For example, it makes sense to introduce antioxidants into the packaging if it has antibacterial properties.

The packaging is not only barrier and active but also smart. This means that it can respond to changes in the environment, for example, to the increase in humidity and temperature which is not acceptable for the film-wrapped product. The wrapping will change colour in such cases.

The discovered method for combining has many useful properties altogether: antibacterial, antioxidant, and antimicrobial, as well as smart properties. The same nanoparticles are responsible for all these properties. It is the method that is unique. Moreover, the obtained films are biocompatible, biodegradable. They are absolutely non-toxic. Such films are in line with the global trend of going green – this is real green chemistry, i.e. which is environmentally friendly.

The method is environmentally friendly, safe, simple and cost-efficient. It is the first time the most important useful properties for extending the shelf life of products have been combined. The invented compound can be used as the film in which the product will be wrapped: this will not involve its quality changes. Moreover, the immersion method seems promising: as the material is completely safe, the products can be immersed into it, thereby creating a protective film.

30 Jan 2018
The conference on international arbitration, where law students from European universities simulate court proceedings and alternately defend the interests of the respondent and the orator.
400
International Projects View all
Similar newsletter View all
20 Jul
RUDN chemist synthesized gold-based electrocatalysts

A RUDN chemist has synthesized an electrocatalyst based on gold nanoparticles with organic ligands, which can trigger both hydrogen production reactions and oxygen reduction reactions in fuel cells. The yield of products with the new catalyst was twice as high as when using a traditional platinum-based catalyst.

67
20 Jul
RUDN University chemist discovered a way to quadruple the speed of toluene photooxidation

A chemist from RUDN University has proposed a new way to control toluene photooxidation using composite catalysts — artificial diamond and titanium dioxide. The discovery refutes the previously existing physical hypothesis about the process of photooxidation of toluene.

77
20 Jul
RUDN University biologist developed new model for analyzing photosynthesis in vivo

A RUDN University biologist has developed a model for the analysis of photosynthesis in vivo. This method allows you to calculate the absorption coefficient of light by chlorophyll, based on its reflectivity. Analysis of light absorption is important for assessing ecosystem productivity, which affects the state of the biosphere and the global climate.

60
Similar newsletter View all