1
RUDN Chemists Received an Antibiotic from Chitin

RUDN Chemists Received an Antibiotic from Chitin

RUDN University chemists first obtained polymer nanoparticles from chitosan derivatives with antibacterial activity at the level of modern antibiotics. Chitosan is a polyaminosaccharide that is obtained from chitin and is actively used as a biological additive and cosmetic agent, but the antibacterial properties of chitosan are very weak, mainly due to its low solubility in water.

Chemical modification of chitosan allows to obtain water-soluble chitosan derivatives with increased antibacterial activity. In this study, chitosan derivatives with extremely high antibacterial activity and pronounced water solubility were obtained. To synthesize chitosan derivatives that form highly active nanoparticles, scientists have developed a new approach based on a combination of click chemistry and ultrasonic processing methods. Using the proposed approach, it will be possible to obtain other polysaccharide particles with antibacterial activity. The work is published in the International Journal of Biological Macromolecules.

Chitosan is a non-toxic, biodegradable and biocompatible polymer that is industrially obtained from chitin by removing the acetyl group from its links. Chitosan is actively used as a dietary supplement, cosmetic agent and growth regulator in agriculture, added to animal feed. However, all the useful properties of chitosan are related to its adhesive properties: it interacts with the mucous membranes, facilitating the penetration of drugs into the body. Chitosan is characterized by weak antibacterial activity, which is strongly limited by its low solubility in water.

RUDN University chemists under the guidance of Assistant Professor of the Department of Inorganic Chemistry Andrey Kritchenkov for the first time obtained derivatives with antibacterial properties at the level of modern antibiotics. Increased antibacterial activity was found to be characteristic of chitosan compounds with a triazole cycle and a betaine fragment, in which the number of cationic groups can be controlled.

To obtain this compound, Andrey Kritchenkov and his colleagues first used an original technique-it combines two approaches that were relatively recently used for chemical transformations of chitosans. The first of them is azide-alkine cycloaddition, one of the most important methods of click chemistry, which allows very selectively and with high yield to bond the desired molecules together. The second approach is ultrasonic treatment, which significantly accelerates the click reaction and does not require anaerobic conditions for its implementation. Using these two methods simultaneously, scientists could produce a cationic polymer while controlling its size and precise chemical composition.

‘We first brought to the area of chemistry of chitosan simultaneous combination of click reactions and ultrasonic treatment and was able to pick up such conditions of ultrasonic irradiation when the reaction proceeds faster and conditions of its implementation much smoother and easier, and a polymer chain of the original chitosan retains its integrity, that is not broken. Apparently, the complexity of optimizing the conditions for frequency, power, amplitude of ultrasound stopped the attempts of our predecessors to finish this job. This is a very complex and painstaking job’, Andrey Kritchenkov said.

Then, to increase the antibacterial activity of the polymer, chemists obtained nanoparticles with a diameter of about 100 nanometers from individual polymer molecules. It is known that polymers often acquire antibacterial properties in the form of nanoparticles. Andrey Kritchenkov and his colleagues checked the presence of required properties in nanoparticles on the cells of Staphylococcus aureus (Staphylococcus aureus) and E. coli (Escherichia coli). It turned out that for individual components of the polymer compound – triazole, betaine, and chitosan – the inhibition zone did not exceed 13 mm, for the obtained nanoparticles this value reached 45 mm for Staphylococcus and 36 mm for E.coli. This, for example, is more than one and a half times higher than the standard numbers for antibiotics – ampicillin and gentamicin.

The authors note that the application was found not only for nanoparticles of chitosan derivatives but also for the polymer in its original form. Polymer molecules are polycations, so they effectively bind polyanions, such as nucleic acids.

Therefore, they can be used for transfection – the injection of DNA into eukaryotic cells by a nonviral method. Scientists measured transfection activity on human liver cells and obtained values of about 30 thousand cells per square centimeter – that is, at the level of modern commercial drugs such as lipofectin.

‘The perspective of application as an antibacterial agent is definitely there. Now our colleagues-biologists are finishing experiments in vivo and they are very successful’, scientist noted.

According to scientists, the main advantage of the obtained chitosan derivatives as an antibacterial agent and for genetic information transfer systems is the absence of toxic effects. Chemists believe that in the same way, it will be possible to obtain other polymer particles with antibacterial and transfection activity.

The article in the International Journal of Biological Macromolecules

Scientific Conferences View all
03 Nov 2017
RUDN University organized the first 5G Summit R&D Russia on June 19 - 20, 2017
928
International scientific cooperation View all
03 Nov 2017
The main goal of the RUDN University and UNISDR Office for Northeast Asia and Global Education and Training Institute for Disaster Risk Reduction at Incheon (UNISDR ONEA-GETI) cooperation is to obtain knowledge about disaster risk reduction and international experience in this area for creating training courses for basic and additional professional education in RUDN
623
Similar newsletter View all
30 Dec
Biologists from RUDN University discovered the secret of flaxseed oil with long shelf life

Biologists from RUDN University working together with their colleagues from the Institute of Molecular Biology of the Russian Academy of Sciences and the Institute of Flax studied the genes that determine the fatty acid composition in flaxseed oil and identified polymorphisms in six of them. The team also found out what gene variations could extend the shelf life of flaxseed oil. This data can be used to improve the genetic selection of new flax breeds. The results were published in the BMC Plant Biology journal.

77
30 Dec 2020
Researchers conducted a systematic review of articles that analyzed the effect of medicine remedies used to treat COVID-19 during pregnancy.

RUDN physician Anna Borisova, in collaboration with colleagues from Italy, used effective searches and classified 123 articles on this research topic. A literature review was conducted by searching databases of medical and biological publications: PubMed, the U.S. National Library of Medicine, and Embase (Elsevier), a biomedical database.

66
30 Dec 2020
Each tree has a "cost". And smart technologies help to define it...

About Tree Talkers and soil structures, proper environmental management for sustainable urban development — in an interview with Elvira Davletyarov, Director of the Agrarian and Technological Institute of RUDN University.

63
Similar newsletter View all