2
Biochemist discovers a promising enzyme to fight cancer cells
Biochemist discovers a promising enzyme to fight cancer cells
A RUDN University biochemist has studied the stimulating effect of chemical substances on the catabolic enzyme PAO (polyamine oxidase). The results could contribute to the development of drugs against cancer. The article is published in the journal Amino Acids.

Polyamines (PA)—spermidine (Spd) and spermine (Spm)—play an important role in the body’s protective reactions. Polyamines are regulators of growth, differentiation and the process of cell death. The dynamics of the metabolism of polyamines is used in the diagnosis of pathologies of systems and organs. Disorders in the metabolism of polyamines lead to an increase in their concentration in the body. This is accompanied by accelerated tissue proliferation due to cell division. This mechanism is typical of various forms of cancer. On the other hand, some decay products by oxidation of polyamines show antitumor and antimicrobial activity and slow the growth of certain types of cancer cells, bacteria and viruses. A RUDN University biochemist proposed to use these properties for the treatment of cancer.

Professor of the Department of Biochemistry of RUDN University Sergey Syatkin designed the structure of the molecule (ligand) with predetermined properties. To do this, he used bioinformatics and computer modeling technologies, primarily molecular docking. This method allowed him to predict how the drug molecules will behave in relation to the target protein. Based on molecular docking data, biochemists synthesized 36 nitrogen-containing substances with different chemical structures. They made a classification of the stimulating effects of these substances on the cells of the body. It turned out that the effects of a potential drug depended on the way in which the special molecules—ligands—included in their composition, accelerated the decay of polyamines by their oxidation.

Using computer simulations, biochemists visually detected how the molecules of inorganic substances that make up the potential drug will dock with one of the mouse proteins. Their classification made it possible to correctly predict the nature of the effects that the substance of the drug will have on the body of an experimental animal. After that, a series of experiments on rats was carried out.

Experiments have shown that substances that can enhance the oxidation of PA can become potential anti-cancer agents. This opens up the prospect of developing antitumor drugs based on the use of substances that activate the rate of decay of PA by enzymatic oxidation.

Scientific Conferences View all
03 Nov 2017
RUDN University organized the first 5G Summit R&D Russia on June 19 - 20, 2017
840
30 Jan 2018
The conference on international arbitration, where law students from European universities simulate court proceedings and alternately defend the interests of the respondent and the orator.
440
Similar newsletter View all
22 Oct
RUDN chemist creates catalyst to produce anti-mosquito substances

A chemist from RUDN University has developed a catalyst for the production of eugenol acetate, a substance that destroys the larvae of mosquitoes transmitting dangerous diseases, being a safe chemical for human health.

50
22 Oct
RUDN soil scientists developed a new method for assessing soil fertility

RUDN soil scientists have revealed a direct correlation between the rate of soil formation of carbon dioxide, called CO2 emissions, and the content of microbial biomass in it. It is known that CO2 emission from soil is mainly conditioned by respiration of soil microorganisms and plant roots. The more CO2 soil emits, the more microbial biomass it usually contains. It was shown that CO2 emission by chernozem of different ecosystems (or different types of land use) correlates with the content of microbial biomass, and most closely with the rate of its microbial respiration. And the soil with good microbial properties has the “best quality”, is more fertile, provides the highest yield of crops and other plant biomass.

69
22 Oct
RUDN University chemists proposed a way to reduce three times the temperature for the oxidation of alkanes

RUDN University chemists and their colleagues from the Russian Academy of Sciences have proposed new catalysts that allow to reduce the temperature of the oxidation reaction of alkanes three times — from 150 to 50 degrees. This significantly reduces the cost of synthesizing alcohols, aldehydes and other compounds needed, in particular, for the production of nylon and capron.

37
Similar newsletter View all