RUDN University chemist discovered a way to quadruple the speed of toluene photooxidation

RUDN University chemist discovered a way to quadruple the speed of toluene photooxidation

A chemist from RUDN University has proposed a new way to control toluene photooxidation using composite catalysts — artificial diamond and titanium dioxide. The discovery refutes the previously existing physical hypothesis about the process of photooxidation of toluene.

Toluene is a combustible liquid that is extracted from gasoline fractions of oil for the production of paint materials, chemicals, solvents, and aviation fuel. Benzaldehyde and carbon dioxide are produced during the photooxidation of toluene. Benzaldehyde is used to produce benzoic acid, an important element in the production of food preservatives, medicines, and chemical raw materials. However, the widespread industrial photooxidation of toluene with oxygen into benzoic acid is a slow process. RUDN University chemist proposed a new way to control the photooxidation of toluene using catalysts g-C3N4/TiO2 and manganese (Mn), increasing the reaction rate 4.3 times and increasing the efficiency of benzaldehyde production.

Rafael Luque from the Research Institute of Chemistry of RUDN University notes that only benzaldehyde and carbon dioxide are found as reaction products for all solids without significant differences between composite samples. And their reference catalyst based on titanium dioxide is highly active and converts the partial oxidation product mainly into benzaldehyde, increasing the efficiency of the reaction.

The chemists conducted a combination of adsorption and kinetic studies. They developed evidence that the reaction occurs by a hydroxyl-mediated mechanism — it means that the increase in the activity of the elements depends on changes in the rate of formation of hydroxyl particles that are present on the surface of solids.

Scientists have found that the reaction rate is quantitatively related to the rate of production of hydroxyl particles, which interact with toluene affect the process of photooxidation. This means that regulating the contact between the components allows controlling the rate of photoactivity.

Scientists found that the new catalysts increase the reaction rate of toluene photooxidation by about 2.5 times, and the addition of manganese to the carbon nitride component shows a further increase in the reaction activity by 1.8 times. That is, the contact between the components of the composite catalyst g-C3N4/TiO2 significantly improves the photooxidation of toluene, and manganese enhances such a beneficial effect.

Thus, chemists have found that the contact between the components allows you to control the rate of photoactivity by slowing or accelerating the process of photooxidation of toluene. The authors of the study report that the findings refute the previously existing hypothesis in the scientific literature about the nature of the photooxidation process.

Rafael Luque, Director of the Scientific Center of the Research Institute of Chemistry of RUDN University, conducted research in collaboration with colleagues from leading institutions in Spain (universities of Madrid, Granada, Cordoba).

The article is published in the Chemical Engineering Journal.

Student's Scientific Initiatives View all
03 Nov 2017
June 22 - 26, 2017 in Barnaul, Altai State University, took place the Summer Academy of the BRICS Youth Assembly, an international event that brought together representatives of different countries
Visiting Professors View all
03 Nov 2017
Michele Pagano is a graduate of the University of Pisa, a leading scientist, the author of more than 200 publications in international journals, and a participant in many international research projects
Similar newsletter View all
30 Dec
Biologists from RUDN University discovered the secret of flaxseed oil with long shelf life

Biologists from RUDN University working together with their colleagues from the Institute of Molecular Biology of the Russian Academy of Sciences and the Institute of Flax studied the genes that determine the fatty acid composition in flaxseed oil and identified polymorphisms in six of them. The team also found out what gene variations could extend the shelf life of flaxseed oil. This data can be used to improve the genetic selection of new flax breeds. The results were published in the BMC Plant Biology journal.

30 Dec 2020
RUDN University chemists developed cheap and eco-friendly surfactants

An international team including chemists from RUDN University suggested an economically feasible and environmentally friendly method to synthesize surfactants. The new compounds can become an eco-friendly alternative to traditional chemicals used in oil production, skincare products manufacture, and in the pharmaceutical industry to transport drugs to diseased body tissues.

30 Dec 2020
RUDN University Mathematicians Applied 19th Century Ideas To Modern Computerized Algebra Systems

A team of mathematicians from RUDN University added new symbolic integration functionality to the Sage computerized algebra system. The team implemented ideas and methods suggested by the German mathematician Karl Weierstrass in the 1870s.

Similar newsletter View all