3
RUDN University biologist found that Chinese date improves the immune system of fish

RUDN University biologist found that Chinese date improves the immune system of fish

A chemist from RUDN University has created a series of catalysts for click chemistry. These reactions are widely used in the synthesis of biologically active substances, as well as in biological and medical research. New catalysts produce a yield of 99%. They are based on cyclodextrin and copper ions.

Click chemistry methods are used to synthesize libraries of substances with high chemical diversity, which is important when developing new drugs. These reactions are necessary for introduction of labels (for example, fluorescent ones) into biological macromolecules, proteins, and DNA molecules. This is used in biological and medical research.

The most commonly used click chemistry reaction is the addition of a substance that contains a carbon-carbon triple bond (alkine) to a compound containing a fragment with three nitrogen atoms in a row (azide). The classic version of the reaction involves the use of copper in oxidation state (I) as a catalyst. For this, ions of copper (II) and an excess of a reducing agent are introduced into the reaction, or copper (I) is used and the reaction is conducted with protection against oxygen, which imposes certain restrictions on the application of this reaction.

A chemist from RUDN University Rafael Luque and his colleagues have developed a series of catalysts with copper ions attached to the surface of silica gel particles using cyclic cyclodextrin oligosaccharide. Cyclodextrin consists of seven glucose molecules closed in a cycle. Inside the cycle there is a container that can hold the copper ion and increase its catalytic activity. Ultrasound irradiation was used to facilitate the binding of cyclodextrin to the surface of silica gel.

The effectiveness of the created catalysts was evaluated on a model reaction of phenylacetylene with benzylazide. The researchers managed to achieve a yield of the reaction product of more than 99%. The yield with copper (II) acetate was 14%, and in the case of copper (II) sulfate, the reaction did not occur at all. The method for producing the catalyst is simple, safe for the environment, and cheap; its use does not require to add reducing agents or oxygen-free conditions. The catalysts can find application in the pharmaceutical industry and in biomedical research.

The paper was published in the journal Molecules.

Student's Scientific Initiatives View all
03 Nov 2017
June 22 - 26, 2017 in Barnaul, Altai State University, took place the Summer Academy of the BRICS Youth Assembly, an international event that brought together representatives of different countries
726
Scientific Conferences View all
03 Nov 2017
RUDN University organized the first 5G Summit R&D Russia on June 19 - 20, 2017
1000
Similar newsletter View all
30 Dec
Biologists from RUDN University discovered the secret of flaxseed oil with long shelf life

Biologists from RUDN University working together with their colleagues from the Institute of Molecular Biology of the Russian Academy of Sciences and the Institute of Flax studied the genes that determine the fatty acid composition in flaxseed oil and identified polymorphisms in six of them. The team also found out what gene variations could extend the shelf life of flaxseed oil. This data can be used to improve the genetic selection of new flax breeds. The results were published in the BMC Plant Biology journal.

143
19 Apr
Dentists from RUDN University Presented a New Classification of Root Canal Shape Changes

Individual characteristics of the shape and cross-section of the root canal are one of the main issues for dentists. When treating a root canal, a doctor needs to properly clean it, fill it, and carry out a rebuilding procedure so that a canal is sealed. The first stage of endodontic treatment requires detailed knowledge of root canal anatomy. A team of dentists from RUDN University studied and classified various changes in root canal shapes. The new classification will help doctors avoid diagnostic errors, better select their tools, and treat patients more efficiently.

42
19 Apr
A chemist from RUDN developed a green catalyst for pharmaceutical and industrial chemistr

Many production facilities (e.g. plastic manufacturers, pharma companies, and others) use nanocatalysts that contain palladium—an expensive component that is not sustainably produced. A chemist from RUDN University found a way to reduce palladium consumption and to make its manufacture more eco-friendly. He developed a catalyst based on a substance that comes from plant waste. Using his invention, manufacturers could cut palladium consumption in half. Moreover, new catalysts can be reused multiple times without any decrease in efficiency.

41
Similar newsletter View all