3
RUDN University chemist created an effective catalyst for the synthesis of organic sulfides
RUDN University chemist created an effective catalyst for the synthesis of organic sulfides
RUDN University received a new compound — a molybdenum complex with a phosphate “bridge” in the form of a dumbbell. The complex accelerates the formation of sulfides from oxides and can be used in the production of medicines and cosmetic materials.

The reduction reaction of organic sulfides from oxides, or deoxygenation of sulfoxides, is a simple direct process of splitting oxygen from organic oxide to produce sulfide. This reaction is important because it occurs in biological processes and in the synthesis of many organic compounds. Organic sulfides are present in most antibiotics, medications, and biological compounds. Sulfides are key intermediates of organic synthesis and important components of many fine chemicals, such as perfumes and cosmetics. Living organisms use an enzyme containing a molybdenum-containing complex to accelerate the reduction of sulfoxides. Molybdenum — based compounds are successfully used in the production of not only synthetic sulfides, but also other classes of important organic compounds-phosphines, olefins. The synthesis of new molybdenum catalysts with improved characteristics based on fundamental knowledge about the mechanisms of deoxygenation is an important and urgent task.

“Modern synthetic chemist, the architect and the Builder. Knowing the properties of building materials — fragments of molecules, it first simulates the structure of a complex molecule, and then collects it. In this work, we were able to obtain a new molybdenum complex in the form of a dumbbell,” the authors of the publication write.

The molybdenum complex was synthesized under hydrothermal conditions (in water and under heating) using salts of molybdenum acid and a number of phosphonic acids that can be converted to phosphate ions. using modern modeling and structural analysis methods, it was possible to classify and accurately determine the structure of a new compound — an eight-core molybdenum cluster, in which four molybdenum cores from below and four from above are connected by a phosphate bridge and additionally stabilized by hydroxyl groups and ammonium ions.

The resulting complex was effective as a homogeneous catalyst in the reduction of diphenyl sulfoxide to diphenyl sulfide. The reaction used a cheap and eco-friendly reducing agent pinacol. By varying various synthesis conditions (duration, temperature, type of solvent, amount of catalyst), chemists were able to achieve a product yield of 99 %. The complex after heat treatment at 310 oC showed another important property — high proton conductivity. Thus, it can be used in obtaining functional membrane materials for creating electrochemical devices — sensors, fuel cells, and supercapacitors.

“After such a remarkable result in the diphenyl sulfide reduction reaction, we tested a catalyst in the reduction of other complex organic sulfides. And we were pleasantly surprised — the yields of the corresponding oxides are also high. The catalyst can be used in the synthesis of even more different substances. In the future, we plan to test this catalyst in other catalytic transformations,” the authors conclude.

Article in the journal of Inorganic Chemistry.

Student's Scientific Initiatives View all
03 Nov 2017
June 22 - 26, 2017 in Barnaul, Altai State University, took place the Summer Academy of the BRICS Youth Assembly, an international event that brought together representatives of different countries
629
Main Publications View all
15 Nov 2017
RUDN University scientists publish results of their scientific researches in highly-recognized in whole world and indexed in international databases journals (Web of Science, Scopus ect.). That, of course, corresponds to the high status of the University and its international recognition. Publications of June-September 2017 ( In Journals of categories Q1-Q3)
748
Similar newsletter View all
22 Oct
RUDN chemist creates catalyst to produce anti-mosquito substances

A chemist from RUDN University has developed a catalyst for the production of eugenol acetate, a substance that destroys the larvae of mosquitoes transmitting dangerous diseases, being a safe chemical for human health.

51
22 Oct
RUDN soil scientists developed a new method for assessing soil fertility

RUDN soil scientists have revealed a direct correlation between the rate of soil formation of carbon dioxide, called CO2 emissions, and the content of microbial biomass in it. It is known that CO2 emission from soil is mainly conditioned by respiration of soil microorganisms and plant roots. The more CO2 soil emits, the more microbial biomass it usually contains. It was shown that CO2 emission by chernozem of different ecosystems (or different types of land use) correlates with the content of microbial biomass, and most closely with the rate of its microbial respiration. And the soil with good microbial properties has the “best quality”, is more fertile, provides the highest yield of crops and other plant biomass.

70
22 Oct
RUDN University chemists proposed a way to reduce three times the temperature for the oxidation of alkanes

RUDN University chemists and their colleagues from the Russian Academy of Sciences have proposed new catalysts that allow to reduce the temperature of the oxidation reaction of alkanes three times — from 150 to 50 degrees. This significantly reduces the cost of synthesizing alcohols, aldehydes and other compounds needed, in particular, for the production of nylon and capron.

37
Similar newsletter View all