RUDN chemist, along with colleagues from the RAS Institutes, simplified the synthesis of antitumor compounds

RUDN chemist, along with colleagues from the RAS Institutes, simplified the synthesis of antitumor compounds

A RUDN chemist in collaboration with colleagues from N.D. Zelinsky Institute of Organic Chemistry and N.K. Koltsov Institute of Developmental Biology (IDB), RAS have developed a new method for the synthesis of isoxazole derivatives — substances that destabilize the process of cell division and potentially may become the basis for new anti-cancer drugs. The new method is based on the use of easily available reagents and does not require high temperatures.

Many modern anticancer drugs are toxic, difficult to access and/or very expensive. Moreover, tumor cells may develop resistance to the drugs used. Therefore, researchers study the biological properties of molecules in order to obtain new antitumor drugs with optimal properties. One of the common approaches to the search for such drugs is testing of analogues of substances that already showed antitumor activity. Such substances include, in particular, isoxazole derivatives that inhibit — “turn off” — the Hsp90 protein, which is necessary for the survival of tumor cells. However, compounds of this class are inaccessible due to the complexity of the synthesis procedure, which requires, in particular, the complete absence of water molecules, and the reagents are expensive and toxic.

RUDN chemist Viktor Khrustalev and his colleagues developed a method for the synthesis of isomers of these substances, that is, the compounds that are identical in atomic composition but different in the arrangement of atoms in space. Easily accessible derivatives of arylnitromethanes and chloroacetamides were used as raw materials, and the reaction itself was carried out at temperatures not exceeding 80 degrees at atmospheric pressure and did not require anhydrous conditions.

The obtained substances had anticancer activity, but unlike the prototype compounds, they did not inhibit Hsp90 protein. Their mechanism of action is based on the destabilization of the cell division process as they prevent the formation of microtubules, which are important in the process of cell division.

Taxol derivatives, one of the most commonly used antitumor agents, have the same mechanism of action. Basing on the compounds obtained by the scientists, it is possible to create a substitute for an expensive, inaccessible and highly toxic derivatives of taxol in the treatment of cancer.

The work was published in European Journal of Organic Chemistry.

News
All news
Science
18 Feb
RUDN University physicists analyzed the role of gravity in elementary particles formation

Gravity might play a bigger role in the formation of elementary particles than scientists used to believe. A team of physicists from RUDN University obtained some solutions of semi-classical models that describe particle-like waves. They also calculated the ratio between the gravitational interaction of particles and the interaction of their charges.

Science
15 Feb
Iron Is to Blame for Carbon Dioxide Emissions from the Soil, Says a Soil Scientists from RUDN University

Iron minerals and bacteria can be the main agents of carbon dioxide emissions from the soil. A soil scientist from RUDN University made this conclusion after studying the process of organic plant waste decomposition of the micro-level. Iron and hydrogen peroxide enter into a reaction, as a result of which active oxygen forms (oxygen radicals) are formed. The radicals destroy plant waste in the soil and promote carbon dioxide emissions.

Science
10 Feb
RUDN University Soil Scientist: Deforestation Affects the Bacterial Composition of the Soil

A soil scientist from RUDN University studied the effect of forest conversion on the properties of the soil: its acidity, carbon and nitrogen resources, bacterial composition, and the activity of microorganisms. The study can help improve the methods of soil cultivation after deforestation, namely, select the best fertilizers, prevent erosion, slow down nutrient depletion, and balance the composition of the bacterial community.