Water under low deuterium concentrations proved to be useful for medicine

Water under low deuterium concentrations proved to be useful for medicine

RUDN scientists explored how reduction of deuterium in water influences reactions in living organisms. As was found that reactions went in less time comparing to those when deuterium was changed into hydrogen. The article was published in Chemical Engineering Journal.

Deuterium, heavy hydrogen isotope, having a nuclear containing an odd neutron, is present in any kind of natural origin water. In typical drinking water rate of deuterium does not exceed 0,015%. If the concentration of deuterium changes to higher or lower level, biological characteristics of water will change. For example, results of previous research show that water with deuterium insufficiency may produce antitumor, antidotal, and metabolical action, influence vital signs of cell cultures in water environment.

The group of RUDN scientists under the guidance of Anton Syroeshkin and Igor Zlatskiy, a Department of Pharmaceutical and Toxicological Chemistry of RUDN Medical Institute explored how the change in deuterium concentration in water influences the processes in biological molecules and vital cells.

Scientists compared water with different isotope rations: light water with reduced deuterium content (D/H around 5 ppm), water with normal deuterium content(140 ppm), and heavy water D2O.

For molecular level of life arrangement, the scientists of RUDN explored galactose mutarotation - rotary transformation of molecule, supramolecular – enzymatic destabilaso-lysozyme activity, for pharmaceutical substances - solubility and diphase distribution, and life time of vital cells in water with different isotope composition.

It was found that rate constant of speed variation of optical rotate for L-galactose was two times smaller than for D- galactose with small content of deuterium despite the concentration. While in heavy water first order mutarotation for L-galactose was not noticed.

The initial velocity of enzymatic lysozyme activity of destabilaso-lysozyme changed: in water under low content deuterium it raised twice, while in heavy water there was no change in activity.

When exploring suspension systems the dissolution rate of active drug substances was investigated. Dissolution occurs faster when protium concentration is greater than deuterium. It is in line with the normal kinetic isotope effect and proves the importance of right choice of solvent isotope composition to speed the process.

The change in water isotope composition influenced the life cells behavior: ambigua single-cells organisms were immobilized up to 8 times faster in water solutions under low deuterium concentrations.

These findings may prove useful for the following biomedical and therapeutic research, where deuterium can act as a regulator of biological characteristics of normal or tumor cells.

The article in Chemical Engineering Journal

News
All news
Science
27 Apr
Vocabulary Size Affects One’s Ability to Differentiate Between Vowels in a Foreign Language, Say Linguists from RUDN University

A team of linguists from RUDN University established that a person’s ability to accurately differentiate between vowel sounds of a foreign language correlates with the size of their vocabulary in said language.

Science
22 Apr
A Bifidobacterial Protein Capable of Reducing Inflammation in Patients with COVID-19 and Other Diseases Was Discovered by a RUDN University Geneticist

A geneticist from RUDN University studied the effect of Bifidobacterium (intestinal bacteria) on the inflammatory process and discovered that their surface protein is capable of stopping excessive or uncontrollable inflammation, like the one observed in COVID-19 patients. A fragment of this protein can be used as an anti-inflammatory medication when treating coronavirus and other diseases.

Science
13 Apr
RUDN University mathematician suggested new approach to cooperative game

A mathematician from RUDN University developed a matrix representation of set functions. This approach is vivid and easy to check, and it makes the calculations easier. Among other things, the new development can be applied to cooperative game theory.