All research projects

Construction of spherically symmetric stationary solutions of the Vlasov-Poisson system of equations describing the stationary distribution of particles in a gravitational field. Obtaining sufficient conditions for confining high-temperature plasma in a “mirror-trap” fusion reactor.

Project leader

Andrey Shishkov

In the problem of describing the asymptotic properties of generalized solutions of quasilinear parabolic equations in a neighborhood of the time of the singular exacerbation of the boundary regime (i.e. boundary data), at the present time, it were found limiting restrictions on the intensity of the exacerbation leading to solutions with a non zero but finite measure of the blow- up, i.e. the so-called S-modes are described.

Project leader

Gennady Bocharov

Development and research of blood clotting models and description of thrombin production in normal and pathological (hemophilia) cases; comparison with experimental data.
The project analyzes boundary value problems for elliptic functional-differential equations in bounded domains and half-space, as well as elliptic functional-differential equations in the entire space R^n.

Project leader

Vladimir Filippov

To study linear elliptic differential-difference equations, symmetrized matrices corresponding to difference operators are used, while the skew-symmetric component does not violate the strong ellipticity of the linear operator and the smoothness properties of generalized solutions. Previously, the solvability criteria for nonlinear elliptic differential-difference equations were proposed, in which the difference operators are described by symmetric matrices. It was shown that, unlike the linear case for nonlinear problems, the skew-symmetric part affects ellipticity. In this project, we propose to use previously developed methods to study nonlinear elliptic problems with difference operators, which correspond to triangular matrices.

Project leader

Anton Savin

The main goal of the project is to create a noncommutative elliptic theory for a new class of operators associated with the representation of a group by quantized canonical transformations on different varieties.