RUDN University chemists obtained the antibiotic from chitin
RUDN University chemists obtained the antibiotic from chitin
For the first time, RUDN University chemists obtained polymer nanoparticles from chitosan derivatives with antibacterial activity at the level of modern antibiotics. Chitosan is a polyaminosaccharide, which is obtained from chitin and is actively used as a biological additive and cosmetics, but the antibacterial properties of chitosan are expressed quite poor, mainly due to its low solubility in water. Chemical modification of chitosan allows obtaining water-soluble chitosan derivatives with increased antibacterial activity. In this study, chitosan derivatives with extremely high antibacterial activity and significant solubility in water were obtained. To synthesize chitosan derivatives, from which highly active nanoparticles are formed, scientists have developed a new approach based on a combination of click chemistry and ultrasonic processing. With the help of the proposed approach, it will be possible to obtain other polysaccharide particles with antibacterial activity. The article is published in the International Journal of Biological Macromolecules.

Chitosan is a non-toxic biodegradable and biocompatible polymer that is industrially obtained from chitin by removing the acetyl group from its components. Chitosan is actively used as a biological additive, cosmetics and growth regulator in agriculture, added to animal feed. However, all the benefits of chitosan are related to its adhesive properties: it interacts with the mucous membranes, facilitating the penetration of drugs into the body. Chitosan is characterized by weak antibacterial activity, which is strongly limited by its low solubility in water.

RUDN University chemists under the leadership of Andreii Kritchenkov, an Assistant Professor  at the Department of Inorganic Chemistry, first obtained derivatives with antibacterial properties at the level of modern antibiotics. Increased antibacterial activity was characteristic of chitosan compounds with triazole cycle and betaine fragment, in which the number of cationic groups can be controlled.

To obtain this compound, Andreii Kritchenkov and his colleagues first used the original method – it combines two approaches, recently applied to chemical transformations of chitosan. The first is azide-alkyne cycloaddition, one of the most important methods of click chemistry, which allows selectively and with a high yield to bind together necessary molecules. The second approach is ultrasonic processing, due to it the click reaction is significantly accelerated and anaerobic conditions of its carrying out are not required. Using these two methods at the same time, scientists could obtain a cationic polymer, while controlling its size and exact chemical composition.

«We first brought to the area of chemistry of chitosan simultaneous combination of click reactions and ultrasonic treatment and was able to pick up such conditions of ultrasonic irradiation when the reaction proceeds faster and conditions of its implementation much smoother and easier, and a polymer chain of the original chitosan retains its integrity, that is not broken. Apparently, the complexity of optimizing the conditions for frequency, power, amplitude of ultrasound stopped the attempts of our predecessors to finish this job. This is a very complex and painstaking job»,  Andreii Kritchenkov said.

Then, to increase the antibacterial activity of the polymer, chemists obtained nanoparticles with a diameter of about 100 nanometers from individual polymer molecules. It is known that polymers often acquire antibacterial properties in the form of nanoparticles. Andreii Kritchenkov and his colleagues checked the presence of required properties in nanoparticles on the cells of Staphylococcus aureus (Staphylococcus aureus) and E. coli (Escherichia coli). It turned out that for individual components of the polymer compound – triazole, betaine, and chitosan – the inhibition zone did not exceed 13 mm, for the obtained nanoparticles this value reached 45 mm for Staphylococcus and 36 mm for E.coli. This, for example, is more than one and a half times higher than the standard numbers for antibiotics – ampicillin and gentamicin.

The authors note that the application was found not only for nanoparticles of chitosan derivatives but also for the polymer in its original form. Polymer molecules are polycations, so they effectively bind polyanions, such as nucleic acids.

Therefore, they can be used for transfection – the injection of DNA into eukaryotic cells by a nonviral method. Scientists measured transfection activity on human liver cells and obtained values of about 30 thousand cells per square centimeter – that is, at the level of modern commercial drugs such as lipofectin.

«The perspective of application as an antibacterial agent is definitely there. Now our colleagues-biologists are finishing experiments in vivo and they are very successful», scientist noted.

According to scientists, the main advantage of the obtained chitosan derivatives as an antibacterial agent and for genetic information transfer systems is the absence of toxic effects. Chemists believe that in the same way, it will be possible to obtain other polymer particles with antibacterial and transfection activity.

The article in the International Journal of Biological Macromolecules

News
All news
Science
18 Sep
RUDN soil scientists developed a new method for assessing soil fertility

RUDN soil scientists have revealed a direct correlation between the rate of soil formation of carbon dioxide, called CO2 emissions, and the content of microbial biomass in it. It is known that CO2 emission from soil is mainly conditioned by respiration of soil microorganisms and plant roots. The more CO2 soil emits, the more microbial biomass it usually contains. It was shown that CO2 emission by chernozem of different ecosystems (or different types of land use) correlates with the content of microbial biomass, and most closely with the rate of its microbial respiration. And the soil with good microbial properties has the “best quality”, is more fertile, provides the highest yield of crops and other plant biomass.

Science
17 Sep
RUDN chemist developed a new catalyst for “green” biofuels

A RUDN chemist has synthesized a catalyst for the production of gamma-valerolactone — an energy-intensive “green” biofuel. The catalyst based on zirconium dioxide and zeolite has shown high efficiency in converting the waste of wood plant materials — methyl levulinate — to gamma-valerolactone.

Science
16 Sep
RUDN University biochemists linked polyphenols in peach leaves to the antioxidant effect of their extract

Biochemists from RUDN University determined which substances in peach leaves provide the antioxidant effect their extract has. They investigated the composition of the powders obtained from leaves of several varieties of peach and found that high polyphenol content correlates with antioxidant properties. The results will help start production of antioxidants from natural sources.